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ABSTRACT 

We prove that if T:Ao--,B o and T : A I ~ B  t both are compact, then 
T: F(,4)--,F(B) is also compact, where F is the minimal or the maximal 
functor in the sense of Aronszajn-Gagliardo. We also derive some results for 
ordered couples. 

O. Introduction 

Let us begin by briefly reviewing the history of our subject. 
In 1960 Krasnoserskii [ 16] established a generalization of the Riesz-Thorin 

theorem, to the effect that if T is a linear operator such that T: L~0--- L® and 
T: Lp,---L#, the latter map being not just bounded but also compact, then 
T: Lp ---Lq is compact too, this in the usual hypotheses about the exponents 
but also assuming that q0 < oo. 

Krasnoserskii's theorem leads to the question whether similar results hold 
true in abstract interpolation, replacing (L~, L,,) and (Lqo , Lq,) by general 
(compatible) Banach pairs (A0, Al) and (Bo, Bl). The complete answer to this 
question is not yet known. 

The first partial results were published in 1964 by Lions and one of the 
present authors [18] (see also [11]), for the case Ao =AI or Bo = BI, and by 
A. Persson [23], for the general case A0 ~A~ and B0 ÷ B~; the latter had 
however to suppose that the couple (Bo, B~) satisfies a certain approximation 
assumption, corresponding to Krasnosel'skii's assumption qo < ~.  An approx- 
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imation condition of the same type was also used in 1966 by Krein and 
Petunin [17] to derive a compactness theorem between scales of Banach 
spaces. 

In 1969 Hayakawa [13] found a result for the real method without any 

approximation hypothesis. However, he had to assume that both T:Ao ~ Bo 

and T: AI---B~ are compact. Quite recently a somewhat novel approach to 
Hayakawa type ("twosided") theorems has been developed in [6] and [7], the 
former paper dealing with the K-method and the latter with the J-method. In 
addition, these papers give Krasnosel'skii type ("onesided") results without 
approximation hypothesis but for "ordered "t pairs (meaning that one space is 
contained in the other). 

In this paper we prove similar results to the ones in [6] and [7], in particular 
thus twosided interpolation theorems without approximation hypothesis, for 
the minimal ("orbit") and the maximal ("coorbit") functors in the sense of 
Aronszajn-Gagliardo [1]. When specialized this gives back not only the results 
of these two papers but also Krasnoserskii type results for those cases of 
ordered pairs which were not considered in [6] or in [7]. We also derive 
corresponding twosided and onesided theorems for other "concrete" inter- 
polation methods such as the"  + "method  (see [22], [12]). Such results might 
potentially be interesting, e.g. applications to integral operators in Orlicz 
spaces (see again [ 12]). However, contrary to what we thought at an early stage 
of this investigation, our techniques do not seem to apply in the case of the 
complex method (see [5]). 

We start by establishing compactness results for a general functor when one 
of the Banach couples satisfies a certain approximation condition. This is done 
in Section 1. Unlike what happens with Persson's condition [23], which is only 
useful when applied to the second couple, we use an approximation hypothesis 
that works in both positions (the first or the second pair). In Sections 2 and 3 
we then specialize these general results to the case of Aronszajn-Gagliardo 
functors. In this way we derive compact interpolation theorems for the orbit 
and coorbit functors without any approximation condition on either of the 

couples (A0, AI) and (B0, Bt). 
The secret of our approach is that when working systematically with 

Aronszajn-Gagliardo functors the approximation hypothesis is so to speak 
shifted from the given pair to the one of which it is the orbit or coorbit. In this 

t The term "ordered" in this sense is used in the forthcoming monograph [4]. 
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respect we have been guided by a similar treatment of WolfPs theorem [25] in 

[15], [8]. Once again one thus has an illustration of the old truth that in 

mathematics things sometimes become simpler if one passes to a more general 

setting . . . .  
Finally, in Section 4, we discuss some open questions, in particular whether 

it is possible to prove general onesided results (of the Krasnosel'skii type) 

without approximation hypothesis. 

The authors would like to thank M. Cwikel for his helpful comments on the 

first version of  this article. 

1. General twosided interpolation theorems for compact operators 

Let us start by fixing the terminology (see [3]). 

Let A = (A0, A 1) and/~ = (B0, Bi) be two Banach couples. We write T: A ~ B 
to mean that Tis a linear operator from A0 + Am into B0 +Bm whose restriction 

to each Ai defines a bounded operator from Ai into B~ (i = 0, 1). We put 

IIT II~,s -- max{ I IT IlA0,B0, II T Iksl}. 

For convenience we shall work with interpolation functors F of exponent 0, 

for some 0 < 0 < 1. Thus F associates to each Banach couple A an inter- 

mediate Banach space F(A ), i.e. Ao A A~ c ~ F(A ) ~-~ Ao + A~, in such a way 

that given any other Banach couple B and any operator T: A - ~ q ,  the 
restriction of T to F(A) defines a bounded operator from F(A) into F(B) and 

the following holds: 

II~o,~0 II r (1) II T II~),F¢~> = < c II T 1--0 [[al.s.° 

for some constant C independent of T. 
In order to describe an extremal property of the real interpolation method 

Ao,q (see [18]) with respect to this class of functors, we recall that the 

K-functional is defined by 

K(t, a; A) = inf{ II ao I1~o + t II a~ I1~, : a = a0 + am, a, ~A~}, a ~A0 + Am, t > 0. 

The next lemma shows that 

Ao, m ~ F(A) ~ Ao,~. 

LEMMA 1.1. Let F be an interpolation functor o f  exponent 0 (0 < 0 < 1) 
and let A = (Ao, A~) be any Banach couple. Then we have 

(2) II a Ile~) =< c II a IIA~ -°  II a II~,, a ~Ao N Am, 
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(3) K ( t , a ; A ) < C t  ° Ila IIF(A~, a ~ F ( A ) ,  t > 0 ,  

for some constant C independent o f  a and t. 

Proof .  This result is known, see [3], Thm. 3.9.1. Since inequality (3) is 
established there with the additional assumption 

"A0 N A~ dense in A0 and in A~" 

we show now how to derive it without that supposition. 
Let a be any element in F(,4) and let t be any positive number. Applying the 

Hahn-Banach theorem we can find fbelonging to the dual space of A0 + A~ 
such that 

( f , a )  = K ( t , a )  

and 

u f 11~6 ~ l, II f I1~ ~ t. 

It follows from (1) that f :  F(A)---C with norm less than a constant multiplied 
by t o . Therefore we conclude that 

K(t, a) < Ct ° II a I1~>. [] 

As a consequence of Lemma 1.1, it follows that the result of Lions-Peetre 
([ 18] or [3], 3.8) mentioned in the Introduction works for the spaces produced 

by the functor F. We state it now for later use. 

LIONS-PEETRE LEMMA. Let F be interpolation functor o f  exponent 0 

(0 < 0 < 1), let ,4 = (,40, AI) be a Banach couple and let B be a Banach space. 

Assume that T is a linear operator. 

(i) I f  T: Ao ~ B is bounded and T: A~ ---, B is compact, then T: F ( , 4 ) ~  B is 

compact. 

(ii) I f  T: B --* Ao is bounded and T: B ~ Al is compact, then T: B ---, F(,4) is 

compact. 

To proceed to our compactness theorems, we first assume that one of the 
Banach couples satisfies a certain approximation hypothesis. Afterwards we 

shall see that this condition is not needed in many applications. 
Consider the following approximation condition on the Banach couple 

d = (,40, A0:  

There exists a sequence {P.}.~_~ of linear maps from Ao +A~ into Ao ~ A~ 
and two other sequences {Q+ }~=~, {Q.- }~o=~ of linear maps from Ao + A~ into 
Ao + A~ such that: 
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(I) They are uniformly bounded in A, 

sup { II e. lIAr, II a.+ lIAr, II Q.- lIAr) < ~c. 
n 

(II) The identity operator I on A can be decomposed as 

I = P . + Q  + + a ~ ,  n = l , 2  . . . . .  

(III) For each positive integer n one has 

Q,+ 'Ao~AI  and Q,- : A l ~ A 0  

and the sequences of norms 

{ U a.+ IIAo~,~}. ~- ~, { II a, -  IIA~,o}.~-t 

converge to 0 when n ~ oc. 

REMARK 1.2. Note the difference between this approximation condition 
and the one used by A. Persson in [23]. He only considers a sequence of  linear 

maps {R, }~-t from Ao + At into A0 ~ At, uniformly bounded in i[ and such 
that 

II a - R,,a II~o--" 0 as n --- ~ ,  for each a ~A0. 

In our case, ifAo N A~ is dense in F(A), we also have a convergence statement 
of this type but for F(A): 

II a - P , , a  l i ra) - )0  as n - - - ~ ,  for each aCE(A) .  

Indeed, let a EA0 f) At. Then we get 

II Q+ a I1~¢~) ---< II Q+ k i n ) I I  a lifo 

< C  ii Q+ t-0 = II~o~0 II a.+ II~o~, II a I1~o. 

It follows from (I) and (III) that II Q+ a lira)--" 0. In the same way we prove 

that II Q.- a I1~(~)--" 0, and therefore II a - P,,a lira)--" 0. Making appeal to the 
density concludes the proof. 

Some consequences of  this approximation condition are given in the next 
lemmas. 

LEMMA 1.3. Let the hypotheses (I) to (III) be fulfilled for ,4 = (Ao, At),/et  
B = (Bo, Bt) be any other Banach couple and let T:  A --, B. IfA~ is continuously 

embedded in Ao or alternatively Bt continuously embedded in Bo, then 
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II T O :  II~0.~o-~ 0 as n --" oc. 

PROOf. Assume first A~ ~ , Ao. We can factorize TQ~ by means of  the 

following diagram: 

Ao Q'+ ' Ao 

Al 

T 
B o 

[] 

Given any Banach couple d = (Ao, AI), we denote the closure of  A0 N A I in A i 

(i = 0 ,  1) by A ° and we write 3 ° =  (AS, A~'). We use these closures in the 
following result: 

LEMMA 1.4. Assume that ,4 = (Ao, AI) satisfies the approximation hypoth- 
eses (I) to (III). The following holds: 

(i) I fa  EAS, then II Q~- a I1~o--" o as n ~ oo. 

(ii) I fa  EA~, then II t2, + a I1~,--" 0 as n ~ oo. 

PROOF. First let a ~Ao tq At. We have 

II a~- a lifo --< II Q ;  I1~,~o II a IIA,. 

Hence hypothesis (III) yields 

II t2;  a I1~°--" 0 as n ~ oo. 

The conclusion follows by taking into account that the maps {Q~-} are 

uniformly bounded in Ao and that Ao tq AI is dense in AS. 

(2.+ T 
Ao ' Ao ' Bo 

o\ J, 
T 

AI ' BI 

Thus we have 

II T O :  IIA~m --< II T IkBo II I IIA,.,0 II Q~+ IIA0~,,. 

Whence hypothesis (III) implies that 

II TQ~ + liars0-" 0 as n ~ ~ .  

In the case B1 ~ B0 the proof is similar, using now the factorization 
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The proof of (ii) is symmetrical. [] 

Our last auxiliary result has a proof analogous to Lemma 1.3. We omit the 

details. 

LEMMA 1.5. Let .4 = (A0, At) be a Banach couple, let the hypotheses (I) to 

(III) be fulfilled by B = (B0, B~) and let T: .4 - ,  B. I f  either Ao is continuously 

embedded in A~ or Bo is continuously embedded in B~, then 

II Q~- T IIA0, o 0 as n ---" oo. 

We are now able to establish the crucial results of  this section. 

THEOREM 1.6. Assume that .4 =(A0,A~) satisfies the approximation 
hypotheses (I) to (III) and let B = (Bo, B1) be any other Banach couple. IJ 
T: .4 ---, 1~ with 

T: Ai ---, Bi compactly for i = O, 1, 

then 
T: F(`4)---, F(B) is also compact, 

where F is any interpolation functor o f  exponent 0 (0 < 0 < 1). 

PROOF. TO see that T: F ( A ) ~ F ( B )  is compact it suffices to show two 

things: 
(1) TP, : F(A)-- ,F(B)  is compact for each n = l, 2 , . . . .  

(2) II T - T P .  II vCA .FCn --" 0 a s  n --- or. 
The proof of (1) is immediate as we can factorize TP, using the following 

diagram: 

F(.4) e , A o O A l 

T 
Ao ' Bo / 

%""•At r ' Bl 

Hence, since T: A0 ~ B0 and T: A~ --, Bt are both compact, the compactness of 

TP, follows by Lions-Peetre Lemma, clause (ii). (In fact, in the situation at 

hand, the compactness of TP, can be checked directly in a really simple way, as 
we have compactness on the two sides.) 

To prove (2) we write using (II) 

T - TP, = T(I - P,) = TQ~ + + TQ~-. 
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It is sufficient to show that, say, 

II TO, + I IF~ , r~ )~  0, 

as the corresponding statement with the second term (Q"+ replaced by Q,-) 
then follows by symmetry. In view of our assumption on the functor F,  we 
have 

II TQ, + IIm~,~¢n~ < c II TQ, + ,-o = Ii~o,Bo II TO.  + II#,,B,. 

In this inequality, both factors on the right are bounded, so it suffices to check 
that the former tends to 0. Assume the contrary. Then we can find a sub- 
sequence (TQ~ } of { TQ] } and a bounded sequence {a,,} c A0 such that 

II + TQ., a., IIB0--'A ~ 0. 

By the compactness of T'Ao---" Bo and uniform boundedness of {Q.+ } on 
A 0, we may also assume, passing to another subsequence if necessary, that 
{ TQg a J  converges to some element b in B0, so that II b liB0 = 2. But by 
hypothesis (III) we obtain that ( TQg a,,} converges to 0 in Bt. Therefore b = 0 
contradicting 2 4= O. [] 

If  either A or a is an ordered couple, then we do not need compactness in 

T: A0"--" B0 to derive that the interpolated operator is still compact: 

THEOREM 1.7. We make the same assumptions on .4, B and F as in the 
previous theorem. We assume also that At is continuously embedded in Ao or 
alternatively B~ is continuously embedded in Bo, and that T: .4 ~ 1~ with 

Then 
T: At ---. B~ compactly. 

T: F(.4)--. F(B) is compact. 

PROOF. The compactness of T:A~ ~ Bt and similar arguments to those in 
the proof  of  the previous theorem imply that 

TP, : F(`4)~F(B)  is compact for each n -- 1, 2 , . . .  

and that 

II TQ,- UA,.n,-"0 asn-- - -~ .  

On the other hand, Lemma 1.3 gives that 

II TQ,  + IIA~B0~0 asn-- - -~ .  
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Since 

II T -  TP, IIv<~),F(n) 

---< II TQ# IIv(~),~(n) + II TQ; IIm),~(n, 

< C( II TQ~ + ,-o IIA~n0 II TQ~ + II~,,n, + II TO; ,-e = IIA0,n0 II TQ; II°,,B,) 

and the sequences { II za~ + II~,,B,}, { U TO; IkBo} are bounded,  we conclude 
that Tis  the norm limit of the sequence of compact operators { TP, }. Therefore 
T: F(A)---, F(B) is compact. [] 

Next we discuss the behaviour of  compactness under  interpolation when the 
second couple satisfies the approximation condition. 

TrI~OR~M 1.8. Let ,4 = (Ao, A~) be a Banach couple and assume that 
B = (Bo, BI) satisfies the approximation hypotheses (I) to (III). I f  T: .4 ---, B with 

T: A~ --" Bi compactly for i = O, 1, 
then 

T: F(,4 °) ~ F(B °) is also compact, 

where F is any interpolation functor of  exponent 0 (0 < 0 < 1). 

PROOF. Recall that A ? is the closure of A0 tq Am in At. Hence 

T : A ° - - , B  ° (i = 0 ,  1) 

is still compact because T(A °) C B °. 
Again, in order to show that T:F(A°)-- ,F(B °) compactly, it suffices to 

establish that 
(a )  P.T: F(`4°)-.F(B °) is compact for each n = 1, 2 , . . .  and 

(b) II T - P~T ]le(~o),e(~o)--" 0 a s  n ~ pp. 

To prove (a) we have, this time, to use the Lions-Peetre Lemma, clause (i). 

In fact, the following diagram holds: 

T 
A8 , B8 ~ e .  

-"-N 
B0 A Bm ~ F(B °) 

A~ , B[' 

where T: A ° ---B ° is compact (i = 0, 1). Thus by the said lemma, P, Tis  also 
compact as a map from F(`4 °) into F(/~°). 
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For the proof of (b) first we write by (II) 

T - P~T = (I - P~)T = a~- T + Q,+ T 

and we may treat each term here separately. To see that 

II a £  T II ~¢~°~,~¢~-" 0 as n --- 

we note that 

IIAz, B~ II Q~- T Ilge,Be II Q~-T I1~¢~,~ ~ C II Q~-T l-e 

both factors being bounded to the right in this inequality. Thus we only need to 
show that the former tends to 0. With this aim, let e > 0 be given arbitrarily. In 

virtue of T: AS--" B8 compactly, we can find a finite subset {al . . . . .  am } of  the 

closed unit ball of AS such that for any a EA8 with II a Ilag ---- 1, we have 

min II Ta - Taj Ilse --< e/2c. 
I<_j<m 

Here C is the constant of  the hypothesis (I). On the other hand, by Lemma 1.4, 

clause (i), there is N ~ N such that if n ->__ N then 

I la;Tajl lsg<=t/2 (1 <j_-<m).  

Consequently, given any a EA8 with II a Ilae ---< 1, we obtain for n > N 

II a~-Ta Ile~_- < II ag-(Ta - Taj)Ilez+ II a~-Taj IIBz 

< Ce/2C + e/2 = e, 

i.e. 

II Q~-T IIA~,~ ~ e i fn  > N .  

With a similar reasoning, but now using the fact that T'A~-- ,  B~ compactly, 

and Lemma 1.4, clause (ii), one can see that 

II a.+ T IIp~,~¢n~--" 0 as n ~ oo. 

This gives (b) and completes the proof. [] 

In the case of  ordered couples, we obtain again a onesided result. 

THEOREM 1.9. We make the same assumptions on ,4, B and F as in 

Theorem 1.8. We suppose further that either A o is continuously embedded in A1 

or Bo is continuously embedded in BI, and that T:  ,4 ~ B with 
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Then 

PROOF. 

and that 

T: A~ ~ B~ compactly. 

T: F(.4 °) ~ F(B °) is compact. 

Proceeding similarly to Theorem 1.8, we can check that 

P,T:F(.4 °) ~ F(B °) is compact for each n = 1, 2 , . . .  

[1 Q,+ T II~cA°~,F~ ~ 0 as n --- oo, 

because only the compactness of T : A ~ B ~  is needed in the arguments. In 
addition, by Lemma 1.5, we have 

II a. -  T IIAe,B~--" 0 as n --. ~ .  

This together with the boundedness of { II Q ;  T IIAe,n~} imply that 

II Q,- T Ilmo),~s~--- 0 as n ~ oo. 

Whence, using the estimate 

II T - P,T Ilrw~,Fen~ =< II Q ; T  II~¢~%Fen~ + II Q,+T II~w~,~¢B~, 

we derive that T:  F(~4 °) --, F(B °) is compact. [] 

REMARK 1.10. The main examples of interpolation functors of exponent 0 
are the real method [18] and the complex one [5]. These two functors satisfy 

(4) F(Ao, Am) = F(AS, A~) 

for any Banach couple (A0, A0. 

REMARK 1.1 1. In a more general way, any Aronszajn-Gagliardo minimal 
functor [ 1 ] 

G[Xo, Xm; X ] (  - ) 

fulfils (4) whenever Xo = X8 and X1 = X[' (see [ 14], Lemma 2/(i)). We shall deal 
with minimal functors in the next section. 

2. The case of the Aronszajn-Gagliardo minimal fnnctor 

In what follows, we designate by .~ = (X0, XI) a fixed Banach couple and by 
X a fixed intermediate space for .~, i.e. X0 N Xm ~ X "--, X0 + X~. 

Let us recall the definition of  the Aronszajn-Gagliardo minimal ("orbit") 
functor [1] (cf. [14], [19]) in a form suitable for our purposes. 
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Given ,~ = (A0, A0 any Banach couple, let 

u = u ( d ) =  {s I s :  ~- - -d ,  II s IIx.~ ---< l} 

be the unit ball in the Banach space of all linear maps from the Banach pair )? 

into the Banach pair A. 

If  Y is any one of the spaces X, Xo, Xz, Xo (~ Xz, Xo + X~ we denote by 

P[Y] = P(U(A), Y) the Banach space of all absolutely summable families 

x = {Xs} of elements of Y indexed by the elements S of U: 

x={xs}~l~[Y]  if and only if Y, Ilxsllr<~. 
SEU 

It is convenient to set 

~ x  = Y~ S x s .  
s ~ u  

Clearly x E P IX0] implies rtx EA0 and if x ~ l t[X~] then nx EA ~. 

We now define 

G(A) = G[X; X](A) = {a [ aEAo + A,, 3xEP[X],  a = rtx}; 

it is a Banach space in the natural quotient norm (as a quotient of  P[X]) and if 

T: A ~ / ~  then the restriction of  T to G(A) defines a bounded operator from 

G(A) to G(B). Thus G is an interpolation functor. 

For convenience we restrict our attention to the case when G is an interpola- 
tion functor of  exponent 0 (where 0 < 0 < 1), i.e. 

U T II~¢~,GCn~--< C IIT ' -°  I[A0..o I1 T II~,..,. 

In order to specialize the general results in Section 1 to the orbit functor, we 

shall need the following fact. 

LE~r~A 2.1. Let, in this context, l l( .)  denote l ~ with respect to any given 
index set ~" (i.e. if  A is any Banach space then P(A) consists of aliA-valued 
families a = {a,} with Z~e., [I a, IIA < m). Then for any Banach couple A = 
(A0, al)  

holds. 

PROOF. 

P(G(,4)) ~ G(P(Ao), P(A,)) 

Let a = {a~} ~P(G(A)). Then we may write 

av = Y~ Sxs,v with Z II Xs,v IIx < ~ .  
SEU SEU 

vE.,~" 
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Define linear maps Sv which assign to an element x E)to + Xt a family which 
has the entry Sx at position v and 0 elsewhere. It is clear that 

Sv" Xo--" ll(Ao) and S~" Xl --" lt(Al) 

with norm at most 1. As the above formula may be rewritten tautologically as 

a =  Y, S~xs,v 
SE U 
yEA" 

it follows that a ~G(ll(ho), ll(at)), with the embedding from It(G(,4)) into 

G(P(Ao), P(AO) being continuous. [] 

We impose now the approximation hypotheses (I) to (III) on the Banach 
couple . (  = (X0, X~) that we have taken to define the functor G. Then the maps 
Pn extend in a natural way to maps from P[Xo + X~] into P[Xo ¢q Xd, the maps 
{Q~+ }, {Q;  } also extend to maps into ll[X0 + Xd, and the new maps preserve 
properties (I) to (III). Indeed, let us check, for example, that 

(1) II Q~+ II:l#01.:tx, l ~ 0 as  n --" ~ .  

Given any x = (Xs} ~ ll[Xol we have 

II an+ x II:tx, l = Y. 
SEU 

II Q~+ Xs IIx, 

This gives (1). 

-<- II Q~+ Ill.x, E II Xs Ilxo 
SEU 

= U Q~+ IIxo.X, II x II:txol. 

Now we are ready to state the compactness results for the functor G. 

THEOREM 2.2. Let the hypotheses (I) to (III) be fulfilled for ,g and assume 
also that G[,~; X]( - ) is an interpolationfunctor of  exponent 0 (0 < 0 < I). Let 
,4 = (A0, Al) and B = (B0, B~) be any two Banach couples, and let T: ,4 ~ a be 
such that 

T:Ao--'Bo and 

are both compact. Then 

T: G(A)--, G(B) 

PROOV. It is clear that 

T" Al ~ Bt 

is compact. 
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if and only if 

T" G(A)--. G(B) is compact 

7?" = Trt" P[X] ~ G(B) is compact. 

The relevant diagram to have in mind is 

P[X0] " ' A 0 ~ B 0  

It[X1] " ' Al r , Bl 

l '[Xl " , G(A) r ~ G(B) 

Since (ll[Xo],P[Xl]) satisfies the approximation condition, applying 
Theorem 1.6 we have that 

"P : G(ll[Xo], P[X~])-- G(B) 

is compact. In addition, according to Lemma 2.1, 

P[X] ~- ,  ll[G(Xo, X~,)] ¢-----, G(ll[Xo], l'[X,]). 

Therefore we conclude that 

T" P[X]--" G(B) is compact. [] 

Note that in the previous theorem neither,4 nor B is required to satisfy any 
approximation condition. 

Using Theorem 1.7 instead of Theorem 1.6, we obtain the following 
onesided result. 

THEOREM 2.3. Let X, G, ,4 and B be as above. Assume further that Al is 
continuously embedded in Ao or, alternatively, Bt is continuously embedded in 
Bo, and that T: .4 --* 1~ with 

T : AI ~ B~ compactly. 

Then 

T: G(`4)--'G(B) is compact. 

In order to show some concrete cases, let l q (1 < q < ~ )  be the usual space of 
doubly infinite scalar sequences and, for ore R, define lq(2 ~j) by 

lq(2 "j) = {{~} I {2%}~1q}. 
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EXAMPLE 2.4. If )? = (l ~,/l(2-J)) and X = lq(2-°J) [where 0 < 0 < 1, 

1 < q < ~ ]  then, for any Banach couple .4, 

G[l 1, l~(2-J); lq(2- °J)](d)= do.~ 

(one of the spaces of the real method, realized here as a J-space; see [4], [14], 
[ 19]). Thus we have an interpolation functor of exponent 0 and the approxima- 
tion hypotheses are fulfilled: We define 

P , ¢ = ( . . . , 0 , ¢ _ , , . . . , ¢ _ 1 , ¢ o , ¢ ~  . . . .  , ¢ , , 0 , . . . )  

for any doubly infinite sequence 

¢ = (  . . . .  ¢-2, ¢-1, ¢o, ¢~, ¢2 . . . .  )- 

a ? ~  = ( . . . .  o, o, ~,+,,  ~o+2, . . . )  
and 

a ; ~  = ( . . . ,  ~-n-2,  ~-~-1,  o, o , . . . ) .  

Then (I) and (II) are clear. To prove (III) let ~ E X o  = 11. We have 

IIQZ¢IIx,-- 7, 2-Jl~jl --<2-" ~ I~j[ 
j=n+l  j=n+l  

< 2 - "  ~ Ig j l - -2-~ l lg l lxo .  
j ~ - o o  

In a similar way we check that 

II an- ¢ IIxo < 2 -n  II ¢ IIx, 

for ¢ e X , .  
When we write Theorem 2.2 for this example, we obtain the Banach case 

(1 < q < oo) of [6], Thm. 3.1, while Theorem 2.3 when A~ ¢---, Ao gives [7], 

Thm. 2.1. The case BL ~ Bo in Theorem 2.3 produces a new result. 

EXAMPLE 2.5. In the same way as above, one sees that the approximation 
condition is fulfilled with l ~ replaced by the space Co of  sequences tending to 0 
at infinity. The resulting functor (see [14]) 

G[co, Co(2 -J); Co(2 -oQ]( _ ) equals ( - )0 

(also called the"  _ "method;  see [22] and [ 12]). When writing down Theorems 

Similarly, we set 
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2.2 and 2.3 for the " + " method, we obtain the first known results for this 

functor on the behaviour of compactness without an approximation condition. 

REMARK 2.6. 

functor 

The complex method [5] can be also described as a minimal 

G[FL, FL(2 -J); FL(2- oj)](`4) = .4o. 

However, as we already indicated in the Introduction, the space FL, consisting 
of Fourier coefficients of Lebesgue integrable functions, does not behave as the 
former ones. Following [ 15] one might think that smoothed out versions of the 
previous operators P,,  Qfl, Q~- might work. Well, everything is fine concern- 
ing it', but we have not been able to construct any workable analogue of Q~+, 

Q~-. (A similar difficulty has been encountered previously (see [9]).) 

3. The case of the Aronszajn-Gagliardo maximal functor 

Next we turn to the dual results formally gotten from the theorems in 
Section 2 by reversing all arrows. 

Let us start by recalling how the Aronszajn-Gagliardo maximal ("coorbit") 
functor [ 1 ] is defined, the construction dual to the one in Section 2. 

Set now 

v=  V(B)={R IR:B---X, IIR IIn,x 1} 

and let I~[Y] = I~(V(B), Y) have a similar meaning as P[Y] in Section 2: it is 
the Banach space consisting of all bounded Y-valued families { YR } with V as 
index set, normed by 

II Y II,°trj = sup II YR I1 . 
R E V  

We further set 

ib = {Rb}R~v for b ~B0 + Bi, 

thus ib belongs to l°°[Xo + Xl], and we define 

H(B) = H[X; X](B) = {b I b EBo + Bl, ib E/~°[X]}; 

it is a Banach space in the natural induced norm and if T: .4  ~ B  then 
T: H(.4)--.H(B). Hence H is an interpolation functor. As in Section 2, we 
assume for convenience that it is of exponent 0 (where 0 < 0 < 1). 

About the given entities . (  = (Xo, X~) and Xwe  make the same assumptions 
as in the preceding section, viz. t he  approximation hypotheses (I) to (III). 
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Again, it is vital for our approach that the operators Pn, Q+, Q~- mentioned 

there extend in a natural way to l~[Xo + XI] preserving properties (I) to (III). 

Now we establish an auxiliary result. 

LEMMA 3. I. Let, similarly as in Lemma 2. l, l~( • ) be l ~ with respect to an 
arbitrary flxed index set X (i.e., if  B is any Banach space then l~(B ) consists of  
all B-valued families b = {by} such that supra.,. II by < ~) .  Then for any 
Banach couple B -- (B0, BI) 

H(l~(Bo), l~°(B,)) ~ I~(H(I~)) 
holds. 

PROOF. Let b = {by} be in H(l~(Bo), l~(BO) of norm 1. I fR is any element 

of V = V(B), that is a linear map R : B ----,~ofnorm II R IIB.x --< 1, and v0 is any 

fixed index in X ,  we define a linear map 

R~o : (l~(Bo), I~(BI)) ~ X 

of norm < 1, by stipulating that 

R~o(y~} = RY~o. 

By the definition of H(l~(Bo), l~(Bt)), we have that 

Rv0{b~} = gbvo~X with II gb~o IIx --< 1. 

Now, as R is arbitrary in this reasoning, it follows that 

b~oEH(B) and II bvo IIH< > =< 1. 

Finally, since Vo is also arbitrary, we obtain that 

b = {b~}EI~(H(B)) with II b < 1. [] 

Next we discuss compactness results for the coorbit functor. 

THEOREM 3.2. Let the hypotheses (I) to (III) be fulfilled for X and assume 
also that H[X; X]( - ) is an interpolation functor of exponent 0 (0 < 0 < 1). Let 
`4 = (.40, At) and B = (Bo, B~) be any two Banach couples, and let T: .4 ~ B be 
such that 

T:Ao--"Bo and T:A~---'BI 

are both compact. Then 

T: H(.4 °) --, H(B °) is compact. 
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PROOF. 

relevant diagram reads now 

o T o i 
Ao ~ Bo ~ l°°[Xo] 

o i 
A~  ~ B I - - - - +  l ~ [ X l ]  
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First note that it suffices to show that 7 ~ = iT is compact. The 

Consequently 

:F: H(.4 °)--+I~[X] compactly. [] 

In the case of ordered couples we obtain a onesided result as well. 

THEOREM 3.3. Let X, H, .4 and B as above. Suppose further that Ao is 
continuously embedded in A i or alternatively Bo is continuously embedded in Bm, 
and that T: .4 ~ B with 

T : AI ~ B~ compactly. 
Then 

T: H(.4 °) ~ H(B °) is compact. 

PROOF. IS the same as the previous one but replacing Theorem 1.8 by 

Theorem 1.9. 

Let us now see a concrete case. 

EXAMPLE 3.4. Take ,~ = (l ~, 1~(2 -Q) and X = lq(2 -0s) (where 0 < 0 < 1, 

1 < q < ~) .  Then, for any Banach couple ,4, we have 

n[ l  ®, 1~o(2 -j); lq(2 -oj)](.4) = n[l~o, 1~(2 -j); 1¢(2 -oj)](.4o) _ .4o,q 

again the real method, but this time in the form of a K-space (see [14], [ 19]). 
And the approximation condition is fulfilled by J? as one can see proceeding 
analogously to Example 2.4. 

H(`4o) r ,  H(Bo ) ~ lo~[X] 

According to Theorem 1.8, we have that 

7": n(`4 °) ---, H(I~[Xo], l°°[Xl]) 

is compact, and by Lemma 3.1, we know that 

n(l~[Xo], l~[Xd) ~- '  l~[n(Xo, X0] ~ , l~[X]. 
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For this concrete example, Theorem 3.3 when B0 ~ Bt is [6], Thm. 3.2. 

The case A0 ~ A~ gives a new result. 
Let us write down the new information contained in Examples 2.4 and 3.4. 

COROLLARY 3.5. Assume  that 14 = (Ao, A~) and B = (Bo, B~) are Banach 

couples with any o f  them ordered, and let T be a linear operator such that 

T:  Ao --" Bo is compact 

and 

T : AI "* BI is bounded. 

Then i f  O < O < 1 and 1 < q < ~ ,  

T:  .4o. q ~ l~o.q is compact.  

We remark that this corollary allows us to incorporate the case q0 = ~ to 
Krasnosel'skii's result mentioned in the Introduction. We only need to require 

that any of  the two measure spaces, where the operator is defined, has finite 

measure. In [2], Thm. IV.2.9, one can find another proof for the case q0 = oo 

when the second measure space is finite. 

4. Concluding observations 

In this last section we indicate briefly some directions in which the present 
investigation might be continued. 

(a) First of  all that the theorems of Sections 2 and 3 probably can be 

generalized to a multidimensional case. In particular, this would yield concrete 

compact interpolation theorems for the functors of Sparr [24] and Fernandez 
[10]. At least for the former a representation as Aronszajn-Gagliardo functors 

is already available [8]. 

(b) Next, we have already said that, contrary to what we intitially thought, 

our approach seems to fail in the case of complex interpolation. Perhaps this is 

an indication of the fact that there are no compact interpolation theorems 

without approximation hypotheses in this case. But it is probably very hard to 

find a counterexample. 

REMARK 4.1. A way out of the difficulty (the nonexistence of a decom- 
position I = P, + Q,+ + Q,- ; see Section 2) would be to replace FL by the 

space FL+ (singly, not doubly infinite sequences). This means that one 

essentially restricts oneself to ordered pairs 14 = (A0, At) : A0 D A~. The dif- 
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ficulty is however that then we do not know if FL and FL÷ yield the same 
spaces (cf. [9]). 

(c) Finally, of course, what still remains open is the question if there 
exist onesided (that is, Krasnosel'skii type) compact interpolation theorems 
without any auxiliary condition (i.e., approximation hypothesis or ordered 
couples). When we finished this paper (October 88) we thought that perhaps 
this would not be the case. We even tried to find a counterexample for the real 
method, looking at weighted L~-couples (this, because one knows [20], [21] 
that a general couple B may be viewed as a subcouple of such a couple). But 
now (May 89) we have been kindly informed by M. Cwikel that a Krasnosel's- 
kii-type theorem holds for the real method. 
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